
By: Babloo Chandan, Deptt. Of BCA, D.K College, Dumraon Page 80

if (in != -1)

{

response.append(inChar);

}

} while ((in != 1) & (inChar != '\n'));

buff.close();

return response.toString();

}

catch (IOException e)

{

System.out.println("Exception: " + e.getMessage());

return null;

}

}

public static void main(String[] arguments)

{

System.out.print("\nWhat is your name?");

String input = ConsoleInput.readLine();

System.out.println("\nHello, " + input);

}

}

Writing Console Output

we have to use System.out for standard Output in Java. It is mostly used for tracing

errors, or for sample programs. These sources can be associated with a writer and sink

objects by wrapping them in writer object. For standard output, an

OutputStreamWriter object can be used, but this is often used to retain the

functionality of print and println methods. In this case, the appropriate writer is

PrintWriter. The second argument to PrintWriter constructor requests that the output

will be flushed whenever the println method is used. This avoids the need to write

explicit calls to the flush method in order to cause the pending output to appear on the

screen. PrintWriter is different from other input/output classes as it doesn’t throw an

IOException. It is necessary to send check Error message, which returns true if an

error has occurred. One more side effect of this method is that it flushes the stream.

PrintWriter pw = new PrintWriter (System.out, true)

Object serialization

Serialization takes all the data attributes, writes them out as an object, and reads them

back in as an object. For an object to be saved to a disk file it needs to be converted to

a serial form. An object can be used with streams by implementing the serializable

interface. The serialization is used to indicate that objects of that class can be saved

and retrieved in serial form. Object serialization is quite useful when you need to use

object persistence. By object persistence, the stored object continues to serve the

purpose even when no Java program is running, and stored information can be

retrieved in a program so it can resume functioning, unlike the other objects that cease

to exist when object stops running.

By: Babloo Chandan, Deptt. Of BCA, D.K College, Dumraon Page 81

DataOuputStreams and DataInputStreams are used to write each attribute out

individually, and then can read them back in at the other end. But to deal with the

entire object, not its individual attributes, store away an object or send it over a stream

of objects.

Transient Keyword

When an object that can be serialized, we have to consider whether all the instance

variables of the object will be saved or not. Sometimes, we have some objects or sub objects

which carry sensitive information like a password. If we serialize such objects even if

information (sensitive information) is private in that object it can be accessed from outside.

To control this we can turn off serialization on a field- by-field basis using the transient

keyword.

//Program

import Java.io.*;

import Java.util.*;

public class SerialDemo implements Serializable

{

private Date date = new Date();

private String username;

private transient String password;

SerialDemo(String name, String pwd)

{

username = name;

password = pwd;

}

public String toString()

{

String pwd = (password == null) ? "(n/a)" : password;

return "Logon info: \n " + "Username: " + username +

"\n Date: " + date + "\n Password: " + pwd;

}

public static void main(String[] args)

throws IOException, ClassNotFoundException

{

SerialDemo a = new SerialDemo("Java", "sun");

System.out.println("Login is = " + a);

ObjectOutputStream 0 = new ObjectOutputStream(new

FileOutputStream("Login.out"));

0.writeObject(a);

0.close();

// Delay:

int seconds = 10;

long t = System.currentTimeMillis()+ seconds * 1000;

while(System.currentTimeMillis() < t)

;

// Now get them back:

ObjectInputStream in = new ObjectInputStream(new

FileInputStream("Login.out"));

By: Babloo Chandan, Deptt. Of BCA, D.K College, Dumraon Page 82

System.out.println("Recovering object at " + new Date());

a = (SerialDemo)in.readObject();

System.out.println("login a = " + a);

}

}

Volatile Modifier

The volatile modifier is used when we are working with multiple threads. The Java

language allows threads that access shared variables to keep private working copies of

the variables. This allows for a more efficient implementation of multiple threads.

These working copies need to be reconciled with the master copies in the shared

(main) memory only at prescribed synchronization points, namely when objects are

locked or unlocked. As a rule, to ensure that shared variables are consistently and

reliably updated, a thread should ensure that it has exclusive use of such variables by

obtaining a lock and conventionally enforcing mutual exclusion for those shared

variables. Only variables may be volatile. Declaring them so indicates that such

methods may be modified asynchronously.

USING NATIVE METHODS

Native Method is a method which is not written in Java, and is outside of the JVM in

a library. This feature is not special to Java. Most languages provide some mechanism

to call routines written in another language. In C++, you must use the extern “C”

statement to signal that the C++ compiler is making a call to C functions.

To declare a native method in Java, a method is preceded with native modifiers much

like we use the public or static modifiers, but don’t define any body for the method,

but simply place a semicolon in its place.

Syntax :

native void getdata();

Q. Differentiate between call-by-value and call-by-reference with the help of

suitable example.

Ans : Both call by value and call by reference is used to pass the argument in a

function.

Call by value-> This method copies the value of an argument into the format

parameter of the subroutine. Therefore, changes made to the parameter of the

subroutine have no effect on the argument.

class Test

 {

 void call(int i,int j)

 {

 i=i*2;

 j=j/2;

 }

 }

By: Babloo Chandan, Deptt. Of BCA, D.K College, Dumraon Page 83

class callbyvalue

 {

 public static void main(String args[])

 {

 Test ob=new Test();

 int a=15;

 int b=20;

 System.out.println(" a and b before call" +a + " " +b);

 ob.call(a,b);

 System.out.println("a and b after call" +a + " " +b);

 }

 }

Call by reference -> In this method, a reference to an argument is passed to the

parameter. Inside the subroutine, this reference is used to access the actual argument

specified in the call. This means that changes made to the parameter will effect the

argument used to call the subroutine.

class Test

 {

 int a,b;

 test(int i,int j)

 {

 a=i;

 b=j;

 }

 void call(Test o)

 {

 o.a*=2;

 o.b/=2;

 }

 }

class callbyref

 {

 public static void main(String args[])

 {

 Test ob=new Test(15,20);

 System.out.println(" a and b before call" +ob.a + " " +ob.b);

 ob.call(ob);

 System.out.println("a and b after call" +ob.a + " " +ob.b);

 }

 }

Q. Two methods used for applet execution

Ans : The two methods for executing an applet in java are :

i) One using internet explorer and using HTML file.

ii) Second using class AppletViewer.

Q. Write a recursive function in java to print the gcd of two given integers.

Ans : public class gcd

 {

 public static void main(String args[])

By: Babloo Chandan, Deptt. Of BCA, D.K College, Dumraon Page 84

 {

 int a, b;

 //User input for both bumbers

 a=Integer.parseInt(args[0]);

 b=Integer.parseInt(args[1]);

 System.out.println("The gcd of "+a+" and "+b+" is "+gcd(a,b)+".");

 }

 static int gcd(int a,int b)

 {

 if(b==0) return a;

 else return gcd(b,a%b);

 }

 }

Q. Static function can only use static data of the class, justify your answer.

Ans : static variables is the variable which use to have static value for all the class. It

is common for all the instance of the class. When an instance variable is declared

static, then at the time of instantiation of class, it is initialize.

 If one want to initialize all the static variables, then a member of static type

can be created. Since the method is static, so one can access it without instantiation of

class also.

e.g, class xyz

 {

 static int n1=5;

 static int n2;

 static void init(int x)

 {

 System.out.println(“n1=” +n1);

 System.out.println(“n2=” +n2);

 System.out.println(“x=” +x);

 }

 public static void main(String args[])

 {

 init(10);

 }

Q. What are the points to ensure while writing a method that is intended to

override another method.

Ans : Some important points that must be taken care while overriding a method.

a) An overriding method replaces the method it overrides.

b) Each method in a parent class can be overrides at most once in any of the subclass.

c) Overriding methods must have exactly same arguments lists, both in type and in

order.

d) an overriding method must have same return type as the method it overrides.

e) Overriding is associated with inheritance.

By: Babloo Chandan, Deptt. Of BCA, D.K College, Dumraon Page 85

Q. Differentiate between interfaces and abstract classes with the help of suitable

examples.

Ans : Abstract class and interfaces similarity between then that methods of both

should be implemented but there are many differences between then these are :

i) A class can implement more than one interface, but abstract class can only subclass

one class.

ii) An abstract class can have non-abstract methods. All methods of an interface are

implicitly or explicitly abstract.

iii) An abstract class can declare instance variable but an interface can’t.

iv) Every method of interface is simplicitly public.

Q. What is data hiding? Explain with example.

Ans : The wrapping of data and functions into a single unit is known as encapsulation

and unit is known as class. The data is not directly accessible to the outside world and

only in functions, which are wrapped in the class, can access it. Functions are made

available to outside world. These functions provides an interface to access data. If one

wants to modify data of an object. It should known exactly the functions that are

available to interact with it. This insulation of data from direct access by program is

known as data hiding. E.g,

class Area

 {

 private int a,b;

 public void calArea(int x,int y)

 {

 a=x;

 b=y;

 return a*b;

 }}

Q. Write a recursive function in java to print a given string in reverse order.

Ans : import java.io.*;

class revorder

{

public static void main(String args[]) throws IOException

{

BufferedReader ob=new BufferedReader(new InputStreamReader(System.in));

System.out.println("type in a statement you want to reverse");

String st=ob.readLine();

String revstr="";

int len=st.length();

char sp=' ';

for(int i=len;i<=0;i++)

{

if(st.charAt(i)==sp)

{

for(int j=len;i<=0;j--)

{

revstr=revstr+st.charAt(i);

}}

System.out.println(revstr);}}}

By: Babloo Chandan, Deptt. Of BCA, D.K College, Dumraon Page 86

1. What is java Platform?

Ans : When Java Code is compiled a byte code is generated which is independent of

the system. This byte code is fed to the JVM (Java Virtual Machine) which resides in

the system. Since every system has its own JVM, it doesn't matter where we compile

the source code. The byte code generated by the compiler can be interpreted by any

JVM of any machine. Hence it is called Platform independent Language.

Java's byte code are designed to be read and interpreted in exactly same

manner on any computer hardware or operating system that supports Java Runtime

Environment.

 When we write the program for any programming language it is called (source

program), and it will have the extension depending upon the language.

 In Java, when we write the program, we will have the ".java" file. And when it

is compiled, we will get the ".class" file. The ".class" file is executed by the Java

Virtual Machine (JVM). If we have the JVM, we can execute the java program

anywhere under operating system. That means, that Java is PLATFORM

INDEPENDENT.

Q. What is a default layout manager in java. Explain it.

i) Border Layout

The border layout is the default layout manager for all Window objects. It

consists of five fixed areas: North, South, East, West, and Center. You do not have to

put a component in every area of the border layout. The demonstration puts the label

"Border Layout" in the North area, the OK button in the South area, and the List of

fruit trees in the Center area. The East (right) and West (left) areas are empty.

If any or all of the North, South, East, or West areas are left out, the Central

area spreads into the missing area or areas. However, if the Central area is left out, the

North, South, East, or West areas do not change.

 When adding components, we will use these constants with the following form

of add(), which is defined by Container.

 Void add(Component compObj, Object region);

Here, compObj is the component to be added, and region specifies where the

component will be added.

ii) FlowLayout

The flow layout is the default layout manager for all Panel objects and applets.

It places the panel components in rows according to the width of the panel and the

number and size of the components. FlowLayout implements a simple layout style,

which is similar to how words flow in a text editor. Components are laid out from the

upper-left corner, left to right and top to bottom. When no more components fit on a

line, the next one appears on the next line.

By: Babloo Chandan, Deptt. Of BCA, D.K College, Dumraon Page 87

1. Explain any six bitwise operators of Java. Also, demonstrate each operator

with an example.

Ans : There are different operations can be performed using bitwise operators:

a) bitwise AND-> The bitwise AND operation will be carried out between the two bit

patterns of the two operands. For example,

Truth Table of AND

A B F (Output)

0 0 0

0 1 0

1 0 0

1 1 1

Example

 Binary pattern

i) int x = 5; 0101

 int y = 2; 0010

int z = x & y; 0000

so, z = 0

b) bitwise OR-> The bitwise OR operations are similar to the bitwise AND and the

result is 1 if any one of the bit value is 1. The symbol | represents the bitwise OR.

Truth Table of OR

A B F (Output)

0 0 0

0 1 1

1 0 1

1 1 1

Example :

 Binary Pattern

i) int x = 5; 0101

 int y = 2; 0010

int z = x | y 0111

so, z = 7

By: Babloo Chandan, Deptt. Of BCA, D.K College, Dumraon Page 88

c) bitwise exclusive OR-> The bitwise exclusive OR will be carried out by the

notation ^. To generate a 1 bit in the result, a bitwise exclusive OR needs a one in

either number but not in both.

Truth Table of XOR

A B F (Output)

0 0 0

0 1 1

1 0 1

1 1 0

Example :

 Binary Pattern Binary Pattern

i) int x = 5; 0101 ii) int a = 6 0110

 int y = 2; 0010 int b = 3 0011

int z = x^y 0111 int c = a^b 0101

so, z = 7 so, c = 5

d) Shift Operations -> The shift operations take binary patterns and shift the bits to

the left or right, keeping the same number of bits by dropping shifted bits off the end

and filling in with zeros from the other end. Java provides two types of shift

operations, left shift and right shift.

i) left shift -> The << operator is used for left shifting.

Example :

Variable Value Binary Patterns

i) X 33 0010 0001(8 bits)

 X<<1 - the bit pattern of the X value is left shifted once.

Output : 0100 0010

So, result is : 66

ii) int X = 33 0010 0001(8 bits)

 X<<3 the bit pattern of the X value is left shifted by thrice.

 0 0100 0010

 0 1000 0100

 1 0000 1000

Since, The resultant is 8 bit pattern

So, the resultant bit pattern will be : 0000 1000

So, result is : 8

By: Babloo Chandan, Deptt. Of BCA, D.K College, Dumraon Page 89

ii) right shift -> The right shift >> operator is used for right shifting.

Example :

 Binary Pattern

i) y = 41, 0010 1001

 y>>3 the bit pattern of the y value is right shifted by thrice.

00101001

00010100 1

00001010 0

00000101 0

So, the resultant bit pattern will be : 00000101

So, result is : 5

e) Bitwise Complement-> The complement operator ~ switches all the bits in a

binary pattern, that is, all the zeroes become ones and all the ones become zeroes. The

complement of a pattern is often useful in signaling and controlling other devices

where several different signals may be complementary to each other.

Example :

Variable Value Binary Pattern

X 23 0001 0111(8 bits)

~X 132 1110 1000

Y ff 1111 1111

~Y 00 0000 0000

Q. What is JVM. Explain

A Java Virtual Machine (JVM) enables a set of computer software programs and

data structures to use a virtual machine model for the execution of other computer

programs and scripts. The model used by a JVM accepts a form of computer

intermediate language commonly referred to as Java bytecode.

A JVM can also implement programming languages other than Java. For

example, Ada source code can be compiled to Java byte code, which may then be

executed by a JVM. JVMs can also be released by other companies besides Oracle

(the developer of Java) — JVMs using the "Java" trademark may be developed by

other companies as long as they adhere to the JVM specification published by Oracle

and to related contractual obligations.

Java was conceived with the concept of WORA: "write once, run anywhere".

This is done using the Java Virtual Machine. The JVM is the environment in which

java programs execute. It is software that is implemented on non-virtual hardware and

on standard operating systems.

JVM is a crucial component of the Java platform, and because JVMs are

available for many hardware and software platforms, Java can be both middleware

and a platform in its own right, hennce the trademark write once, run anywhere. The

use of the same byte code for all platforms allows Java to be described as "compile

once, run anywhere", as opposed to "write once, compile anywhere", which describes

cross-platform compiled languages.

By: Babloo Chandan, Deptt. Of BCA, D.K College, Dumraon Page 90

Q. Write a java program using class and constructor to find the length of string.

import java.lang.reflect.*;

 public class DumpMethods {

 public static void main(String args[])

 {

 try {

 Class c = Class.forName(args[0]);

 Method m[] = c.getDeclaredMethods();

 for (int i = 0; i < m.length; i++)

 System.out.println(m[i].toString());

 }

 catch (Throwable e) {

 System.err.println(e);

 }

 }

 }

 Q. Explain String and StringBuffer class. Explain various string functions.

Java provides the StringBuffer and String classes, and the String class is used

to manipulate character strings that cannot be changed. Simply stated, objects of type

String are read only and immutable. The StringBuffer class is used to represent

characters that can be modified.

The significant performance difference between these two classes is that

StringBuffer is faster than String when performing simple concatenations. In String

manipulation code, character strings are routinely concatenated. Using the String

class, concatenations are typically performed as follows:

 String str = new String ("Stanford ");

 str += "Lost!!";

 If we were to use StringBuffer to perform the same concatenation, we would

need code that looks like this:

 StringBuffer str = new StringBuffer ("Stanford ");

 str.append("Lost!!");

Various string functions

1. public String concat(String s)

This method returns a string with the value of string passed in to the method appended

to the end of String which used to invoke the method.

String s="abcdefg";

System.out.println(s.concat("hijlk"));

By: Babloo Chandan, Deptt. Of BCA, D.K College, Dumraon Page 91

s.concat("hijkl");

System.out.println(s);

2. public charAt(int index)

This method returns a specific character located at the String's specific

index.Remember,String indexes are zero based.Example

String s="Alfanso Mango";

System.out.println(s.charAt(0));

The output is 'A'

3.public int length()

This method returns the length of the String used to invoke the method.example:-

String s="name";

System.out.println(s.length());

The output is 4

4.public String replace(char old, char new)

This method return a String whose value is that of the String to invoke the method

,updated so that any occurrence of the char in the first argument is replaced by the

char in the second argument .Example:-

String s="VaVavavav";

System.out.println(s.replace('v','V'));

The output is VaVaVaVaV

5.public boolean equalsIgnoreCase(String s)

This method returns a boolean value depending on whether the value of the string in

the argument is the same as the String used to invoke the method.This method will

return true even when character in the string object being compared have different

cases.Example:-

String s="Vaibhav";

System.out.println(s.equalsIgnoreCase("VAIBHAV"));

The output is true

6.public String substring(int begin) / public String substring(int begin,int end)

substring method is used to return a part or substring of the String used to invoke the

method.The first argument represents the starting location of the substring.Remember

the indexes are zero based.example:-

By: Babloo Chandan, Deptt. Of BCA, D.K College, Dumraon Page 92

String s="abcdefghi";

System.out.println(s.substring(5));

System.out.println(s.substring(5,8));

The output would be

" fghi "

" fg "

7.public String toLowerCase()

This method returns a string whose value is the String used to invoke the method,but

with any uppercase converted to lowercase.:-

String s="AbcdefghiJ";

System.out.println(s.toLowerCase());

Output is " abcdefghij "

8.public String trim()

This method returns a String whose value is the String used to invoke the method ,but

with any leading or trailing blank spaces removed.Example:-

String s="hey here is the blank space ";

System.out.println(s.trim())

The output is " heyhereistheblankspace"

Q. What is labeled break in java. Explain.

1. The break statement can be followed by a label.

2. The presence of a label will transfer control to the start of the code identified

by the label.

public class Simple

 {

 public static void main(String[] args)

 {

 OuterLoop: for (int i = 2;i<=50; i++)

 {

 for (int j = 2; j < i; j++) {

 if (i % j == 0) {

 continue OuterLoop;

 }

 }

 System.out.println(i);

 if (i == 37) {

 break OuterLoop;

 }}}}

